-
PAPER
Potential Dependence of Gas Evolution in 18650 Cylindrical Lithium-Ion Batteries Using In-Situ Raman Spectroscopy관리자2020-05-12 조회 2,047 댓글 0이메일주소 site@site.co.kr Author Byambasuren Gerelt-Od, Hyosung Kim, Uk Jae Lee, Jaekwang Kim, Nayeong Kim, Yoo Joong Han, Hyungbin Son, Songhun Yoon Journal Journal of The Electrochemical Society Year of Pub. 2018
A long-term in-situ measurement method for evolved gases in commercial 18650 cylindrical lithium ion batteries (LIBs) is proposed using Raman spectroscopy. Hydrogen, methane, carbon dioxide, and carbon monoxide were the main gases detected from cells at 4.2–4.8 V for 1800 h. Gas evolution rates were determined by the aging time and the staying potential, resulting in a nonlinear partial-pressure-dependence as a function of the aging time. Initially, the evolution of carbon dioxide and carbon monoxide was significant. After potential-dependent onset times, hydrogen and methane generation increased suddenly. At low potential ranges of 4.2–4.4 V, mostly hydrogen gas was generated, whereas at high potential ranges (> 4.6 V), methane becames dominant. Even at 4.4 V, importantly, the absolute accumulative H 2 gas pressure was> 3 atm, raising the requirement to monitor such gas for better safety even …
첨부파일 77.png (190.42KB) [0] 2020-05-12 12:24:40 첨부파일 Potential_Dependence_of_Gas_Evolution_in_18650_Cylindrical_Lithium-Ion_Batteries_Using_In-Situ_Raman_Spectroscopy.pdf (1.13MB) [0] 2020-05-12 12:24:40 이전글 Novel silicon–tungsten oxide–carbon composite as advanced negative electrode for lithium-ion batteries 다음글 A comparative study of polarization during the initial lithiation step in...