중앙대연구실

    • PEOPLE
    • RESEARCH
    • PUBLICATION
    • LECTURE
    • BBS
    • PEOPLE
    • Professor
    • Students
    • Alummi
    • RESEARCH
    • Energy storage
    • Inorganic material
    • Composite material
    • Electrochemical analysis
    • PUBLICATION
    • Paper
    • Patent
    • Presentation
    • LECTURE
    • Lecture
    • BBS
    • Notice
    • News
    • Album
모든 메뉴 열기
  • PUBLICATION

    • Paper
    • Patent
    • Presentation
    •  HOME
    • >
    • PUBLICATION

    PAPER

    Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons
    관리자
    2020-05-11      조회 2,277   댓글 0  
    이메일주소 site@site.co.kr
    Author Bok-H Ka, Song-Hun Yoon, Seung-M Oh
    Journal Journal of the Korean Electrochemical Society
    Year of Pub. 2007


    A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as" pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.​

    첨부파일 8.png (269.23KB) [0] 2020-05-11 14:41:00
    첨부파일 Rate_Capability_of_Electric_Double-Layer_Capacitor__EDLC__Electrodes_According_to_Pore_Length_in_Spherical_Porous_Carbons.pdf (663.61KB) [0] 2020-05-11 14:41:00
    이전글 A new layer perovskites Pb2Ga2Nb2O10 and RbPb2Nb2O7: An efficient visible light driven photocatalysts to hydrogen generation
    다음글 Complex capacitance analysis on rate capability of electric-double layer capacitor (EDLC) electrodes of different thickness
    리스트

중앙대

221 HEUK SEOK-DONG, DONGJAK-GU, SEOUL, KOREA TEL: +82-2-820-5769 FAX: +82-2-814-2651
COPYRIGHT©2013 BY NEL. All Rights Reserved.